CLASS 11

Bridge full-wave rectifier, rectifierfilter circuit, clipping/limiting and clamping diode circuits

Bridge full-wave rectifier

$$V_{out} = V_{in}$$

If $V_{in} = V_p$,
 $V_{out} = V_p$

During -ve half cycle, D_3 and D_4 are fb. V_{out} is still +ve at A and -ve at B.

Overall performance

PIV of the diodes in the bridge full-wave rectifier

If the potential barrier of each diode is taken into consideration: $-V_p$ $V_p - 2V_o - V_{out} = 0$ $PIV_{D2} - V_{out} + PIV_{D1} - V_{p} = 0$ $PIV_{D2} + PIV_{D1} - V_p = V_{out}$ $V_{p} - 2V_{o} - (PIV_{D2} + PIV_{D1} - V_{p}) = 0$ Assuming the diodes are identical V_{in} and therefore PIV_{D2}=PIV_{D1}=PIV $2V_{p} - 2V_{o} - 2PIV = 0$ $PIV = V_p - V_o$

Rectifier-filter circuit

- This circuit reduces the rise and fall of the rectifier's output voltage. Hence, the dc voltage level is quite constant.
- The constant dc voltage and current sources are needed by electronic circuits for power and biasing purposes in order to operate.
- The rectifier-filter circuit is implemented using a capacitor or an inductor or the combination of both.

rectifier

Output of the rectifier-filter circuit with the rectifier from the half-wave type. $V_{r(p-p)} = V_p - V_{C(min)}$. Smaller ripple voltage indicates that the rectifier-filter circuit is more efficient.

(a) is the output of a rectifier-filter circuit with the rectifier of the half-wave type. C discharges from t_1 to t_3 . (b) is the output of a rectifier-filter circuit with the rectifier of the full-wave type. C discharges from t_1 to t_2 . **Discharging time is less for the full-wave rectifier-filter** circuit. V_{r(p-p)_Full-wave} < V_{r(p-p)_Half-wave} Vavg (a) $V_{C(\min)}^{+V_p}$ r(p) (b) r(p) NORLAILI MOHD NOH 2008/2009

Ripple factor, r, is a benchmark of the effectiveness of a filter. The smaller the r is, the better is the filter. r can be reduced by increasing the capacitance, C, or load resistance, R_L .

Clipping/Limiting Diode Circuit

Function:

To limit the output voltage from exceeding a certain desired value. This circuit can limit the output voltage from exceeding a certain +ve or –ve voltage.

Application:

A circuit (which in the diagram below is termed as the 'Load circuit') may not be able to process a voltage which is higher (or lower) than a certain value. If the source is unable to provide a signal that follows this requirement, a limiting/clipping diode circuit may need to be used.

- (a) is the limiting/clipping diode circuit with the potential barrier and forward resistor effects excluded.
- (b) is the limiting/clipping diode circuit with the potential barrier effect included.

Ideal diode.

During the +ve half cycle, diode is fb. Hence,

$$\mathbf{V}_{\mathrm{out}} = \mathbf{0}.$$

During the -ve half cycle, diode is rb. Hence,

$$\frac{\text{Ideal diode.}}{\text{During the +ve half}}$$

$$\frac{V_{out} = 0.$$

$$\frac{V_{out} = R_{L}}{R_{L} + R_{S}} (-V_{in})$$

$$\frac{V_{out} = \frac{R_{L}}{R_{L} + R_{S}} (-V_{in})$$

$$\frac{V_{out} = \frac{R_{L}}{R_{L} + R_{S}} (-V_{in})$$

$$\frac{V_{in}}{V_{out}} = \frac{V_{in}}{R_{L} + R_{S}} (-V_{in})$$

$$\frac{V_{in}}{V_{in}} = \frac{V_{in}}{V_{in}} + V_{in} + V_{in$$

 R_{S}

+

Overall performance: +ve half cycle, $V_{out} = 0.$ -ve half cycle,

$$V_{out} = \frac{R_L}{R_L + R_S} (-V_{in})$$

If potential barrier is considered: Diode fb (s/c) if $V_{in} > V_{o}$. Hence, $V_{out} = V_o$. If $V_{in} < V_o$ or V_{in} is at its –ve half cycle, diode is rb (o/c). Hence,

$$V_{out} = \frac{R_L}{R_L + R_S} (V_{in}) \text{ for } V_{in} < V_o \text{ and } V_{in} \text{ is +ve.}$$
$$V_{out} = \frac{R_L}{R_L + R_S} (-V_{in}) \text{ for } V_{in} \text{ during its -ve cycle.}$$

Variable +ve clipper

 $+V_p^{-}$

 $0 \frac{1}{t_0}$

V_{in}

V.

 t_2

in(

During the +ve half cycle, diode is rb and o/c. Hence,

$$V_{out} = \frac{R_L}{R_L + R_S} (V_{in})$$

During the -ve half cycle, diode is fb and s/c. Hence, $V_{out} = 0$.

 R_{S}

V_{out}

+ve half cycle, $V_{out} = \frac{R_L}{R_L + R_S} (V_{in})$ -ve half cycle, $V_{out} = 0.$

If potential barrier is considered: Diode fb (s/c) if V_{in} is -ve and V_{in} is more -ve than $-V_o$. Hence, $V_{out} = -V_o$. If V_{in} is -ve but V_{in} is more +ve than $-V_o$, diode is rb (o/c). Hence,

$$V_{out} = \frac{R_L}{R_L + R_S} \left(-V_{in}\right)$$

For V_{in} during its +ve cycle, $V_{out} = \frac{R_L}{R_L + R_S} (V_{in})$

Variable –ve clipper

Clamping diode

Function:

To include a dc level into an ac signal.

Also known as a dc restorer.

Main application is in the TV receiver as a dc restorer.

Rx

AC signal

Тx

