CLASS 11

Bridge full-wave rectifier, rectifierfilter circuit, clipping/limiting and clamping diode circuits

Bridge full-wave rectifier

$\mathbf{V}_{\text {out }}=\mathbf{V}_{\text {in }}$ If $V_{i n}=V_{p}$, $\mathbf{V}_{\text {out }}=\mathbf{V}_{\mathrm{p}}$

During -ve half cycle, D_{3} and D_{4} are fb. $V_{\text {out }}$ is still +ve at A and -ve at B.

$\mathbf{V}_{\text {out }}=\mathbf{V}_{\text {in }}$
 $$
\text { If } \mathbf{V}_{\text {in }}=V_{p},
$$
 $$
\mathbf{V}_{\text {out }}=\mathbf{V}_{\mathbf{p}}
$$

Overall performance

If potential barrier of

 the diode is considered:
$V_{\text {in }}=2 V_{0}+V_{\text {out }}$
$V_{\text {out }}=V_{\text {in }}-2 V_{\text {o }}$
D_{1} and D_{2} will only be fob if $\mathrm{V}_{\text {in }}>\mathbf{2 V}_{\text {o }}$

Overall performance:

PIV of the diodes in the bridge full-wave rectifier

To determine PIV $_{\text {D } 1}$ and PIV $_{\text {D } 2}$, analyze the circuit when $V_{i n}$ is at its negative half cycle.
When determining PIV of the diodes,
$V_{\text {in }}=V_{p}$.
$\mathbf{V}_{\mathrm{p}}-\mathrm{V}_{\text {out }}=0$
$P I V_{D 2}-V_{\text {out }}+P I V_{D 1}-V_{p}=0$
$P I V_{D 2}+P_{\text {IV }} \mathbf{D}_{1}-V_{p}=V_{\text {out }}$
Assuming the diodes are identical and therefore PIV $_{\mathrm{D} 2}=\mathbf{P I V}_{\mathrm{D} 1}$
$\mathbf{V}_{\mathrm{p}}-\left(\mathrm{PIV}_{\mathrm{D} 2}+\mathrm{PIV}_{\mathrm{D} 1}-\mathrm{V}_{\mathrm{p}}\right)=0$
$2 \mathrm{~V}_{\mathrm{p}}-2 \mathrm{PIV}=0$
$P I V=V_{p}$

If the potential barrier of each diode is taken into consideration:

$\mathrm{V}_{\mathrm{p}}-2 \mathrm{~V}_{\mathrm{o}}-\mathrm{V}_{\text {out }}=0$
$P I V_{D 2}-V_{\text {out }}+P I V_{D 1}-V_{p}=0$
$P I V_{D 2}+$ PIV $_{\text {D } 1}-V_{\mathrm{p}}=\mathrm{V}_{\text {out }}$
$\mathrm{V}_{\mathrm{p}}-\mathbf{2} \mathrm{V}_{\mathrm{o}}-\left(\mathrm{PIV}_{\mathrm{D} 2}+\mathrm{PIV}_{\mathrm{D} 1}-\mathrm{V}_{\mathrm{p}}\right)=0$ Assuming the diodes are identical and therefore $\mathbf{P I V}_{\mathrm{D} 2}=\mathbf{P I V}_{\mathrm{D} 1}=\mathrm{PIV}$
$2 \mathrm{~V}_{\mathrm{p}}-\mathbf{2} \mathrm{V}_{\mathrm{o}}-2 \mathrm{PIV}=0$
PIV $=V_{p}-V_{0}$

Rectifier-filter circuit

- This circuit reduces the rise and fall of the rectifier's output voltage. Hence, the dc voltage level is quite constant.
- The constant dc voltage and current sources are needed by electronic circuits for power and biasing purposes in order to operate.
- The rectifier-filter circuit is implemented using a capacitor or an inductor or the combination of both.

For a rectifier-filter circuit with the rectifier from the half-wave type:
(1)Diode fb. C charged to $\mathrm{V}_{\mathrm{p}} \cdot \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\text {out }}$ as C and R_{L} are in parallel.
(2)Diode rb. Diode is an o/c. C discharge through R_{L}.
$\mathbf{V}_{\text {out }}=\mathbf{V}_{\mathrm{C}}=\mathbf{V}_{\mathrm{p}} \mathrm{e}^{-\mathrm{t} /\left(\mathrm{R}_{\mathrm{L}} \mathrm{C}\right)}$

(3) $\mathbf{V}_{\text {out }}=V_{C}=V_{p} e^{-t /\left(R_{L} C\right)}$ $t_{3} \rightarrow t_{4}, V_{\text {in }}$ is +ve but $V_{\text {in }}<V_{C}$. Diode is still rb. \mathbf{C} still discharging through \mathbf{R}_{L}.
(4) $t_{4} \rightarrow t_{5}, V_{\text {in }}$ is +ve and $V_{\text {in }}>V_{C}$. Diode is fb . Diode is s / c. $V_{\text {in }}$ is charging C back to V_{p}.

Output of the rectifier-filter circuit with the rectifier from the half-wave type. $\mathrm{V}_{\mathrm{r}(\mathrm{p}-\mathrm{p})}=\mathrm{V}_{\mathrm{p}}-\mathrm{V}_{\mathrm{C}(\text { min })}$. Smaller ripple voltage indicates that the rectifier-filter circuit is more efficient.

(a) is the output of a rectifier-filter circuit with the rectifier of the half-wave type. C discharges from t_{1} to t_{3}.
(b) is the output of a rectifier-filter circuit with the rectifier of the full-wave type. C discharges from t_{1} to t_{2}.
Discharging time is less for the full-wave rectifier-filter circuit. $\mathbf{V}_{\mathbf{r}(\mathbf{p}-\mathrm{p}) \text { _Full-wave }}<\mathbf{V}_{\mathbf{r}(\mathbf{p} \text {-p)_Half-wave }}$

V_{C} is min when $t \approx T$

$$
V_{C(\text { min })}=V_{p} e^{-\frac{T}{R_{L} C}}
$$

Ripple voltage, $\mathrm{V}_{\mathrm{r}(\mathrm{p}-\mathrm{p})}=\mathrm{V}_{\mathrm{p}}-\mathrm{V}_{\mathrm{C}}$ (min)

$$
\begin{aligned}
& \begin{aligned}
V_{r(p-p)} & =V_{p}-V_{p} e^{-\frac{T}{R_{L} C}} \\
& =V_{p}\left(1-e^{-\frac{T}{R_{L} C}}\right) \\
& =V_{p}\left(1-e^{-\frac{1}{R_{L} C f}}\right) \\
V_{r(p)} & =\frac{V_{p}}{2}\left(1-e^{-\frac{1}{R_{L} C f}}\right) \\
V_{d c} & =V_{a v g}=V_{p}-V_{r(p)}
\end{aligned} .
\end{aligned}
$$

$$
\begin{aligned}
& V_{d c}=V_{p}-\frac{V_{p}}{2}\left(1-e^{-\frac{1}{R_{L} C f}}\right) \\
& \left.\left.V_{d c}=V_{p} 1-\frac{1}{2} 1-e^{-\frac{1}{R_{L} C f}}\right]=\frac{V_{p}}{2} 1+e^{-\frac{1}{R_{L} C f}}\right]
\end{aligned}
$$

Ripple factor, $r=\frac{V_{r}(p-p)}{V_{d c}}$

Ripple factor, r, is a benchmark of the effectiveness of a filter. The smaller the r is, the better is the filter. r can be reduced by increasing the capacitance, C, or load resistance, \mathbf{R}_{L}.

Clipping/Limiting Diode Circuit

Function:

To limit the output voltage from exceeding a certain desired value. This circuit can limit the output voltage from exceeding a certain +ve or -ve voltage.
+ve limiter -ve limiter

Application:

A circuit (which in the diagram below is termed as the 'Load circuit') may not be able to process a voltage which is higher (or lower) than a certain value. If the source is unable to provide a signal that follows this requirement, a limiting/clipping diode circuit may need to be used.

(a) is the limiting/clipping diode circuit with the potential barrier and forward resistor effects excluded.
(b) is the limiting/clipping diode circuit with the potential barrier effect included.

Ideal diode.

During the +ve half cycle, diode is fb. Hence,
$V_{\text {out }}=0$.
During the -ve half cycle, diode is rb. Hence,
$V_{\text {out }}=\frac{R_{L}}{R_{L}+R_{S}}\left(-V_{\text {in }}\right)$

Overall performance:

 + ve half cycle,$V_{\text {out }}=0$.
-ve half cycle,
$V_{\text {out }}=\frac{R_{L}}{R_{L}+R_{S}}\left(-V_{\text {in }}\right)$

If potential barrier is considered: Diode $f b(s / c)$ if $\mathbf{V}_{\text {in }}>\mathbf{V}_{\mathbf{0}}$. Hence, $V_{\text {out }}=V_{0}$. If $V_{\text {in }}<V_{o}$ or $V_{\text {in }}$ is at its -ve half cycle, diode is rb (\mathbf{o} / c). Hence,

$$
V_{\text {out }}=\frac{R_{L}}{R_{L}+R_{S}}\left(V_{\text {in }}\right) \text { for } V_{\text {in }}<V_{o} \text { and } V_{\text {in }} \text { is }+v e .
$$

$$
V_{\text {out }}=\frac{R_{L}}{R_{L}+R_{S}}\left(-V_{\text {in }}\right) \text { for } V_{\text {in }} \text { during its -ve cycle. }
$$

Variable + ve clipper

Diode fb (\mathbf{s} / c) when $\mathbf{V}_{\text {in }}>\mathbf{V}+\mathbf{V}_{\mathbf{0}}$. Hence, $\mathrm{V}_{\text {out }}=\mathbf{V}+\mathbf{V}_{\mathbf{o}}$. Diode rb (o/c) when $V_{i n}<V+V_{0}$.
$V_{\text {out }}=\frac{R_{L}}{R_{L}+R_{S}}\left(V_{\text {in }}\right)$ for $V_{\text {in }}<V+V_{o}$ and $V_{\text {in }}$ is +ve.
$V_{\text {out }}=\frac{R_{L}}{R_{L}+R_{S}}\left(-V_{\text {in }}\right)$ for $V_{\text {in }}$ during its -ve cycle.

-ve clipper

During the +ve half cycle, diode is rb and o/c. Hence,

$V_{\text {out }}=\frac{R_{L}}{R_{L}+R_{S}}\left(V_{\text {in }}\right)$
During the -ve half cycle, diode is fb and s / c. Hence, $\mathrm{V}_{\text {out }}=0$.

Overall performance:

+ ve half cycle,
$v_{\text {out }}=\frac{R_{L}}{R_{L}+R_{S}}\left(V_{\text {in }}\right)$
-ve half cycle,
$V_{\text {out }}=0$.

If potential barrier is considered: Diode $f b(s / c)$ if $V_{\text {in }}$ is -ve and $V_{\text {in }}$ is more -ve than $-V_{0}$. Hence, $V_{\text {out }}=-V_{o}$. If $V_{i n}$ is $-v e$ but $V_{i n}$ is more +ve than $-V_{o}$, diode is rb (\mathbf{o} / c). Hence,

$$
V_{\text {out }}=\frac{R_{L}}{R_{L}+R_{S}}\left(-V_{\text {in }}\right)
$$

For $V_{\text {in }}$ during its + ve cycle, $V_{\text {out }}=\frac{R_{L}}{R_{L}+R_{S}}\left(V_{i n}\right)$

Variable -ve clipper

Diode fb (s / c) when $\mathrm{V}_{\text {in }}<-\mathrm{V}-\mathrm{V}_{0}$. Hence, $\mathrm{V}_{\text {out }}=-\mathrm{V}-\mathrm{V}_{\mathrm{o}}$. Diode rb (o/c) when $V_{i n}>-V-V_{0}\left(V_{i n}\right.$ is more $+v e$ than
$-V-V_{0}$)
$V_{\text {out }}=\frac{R_{L}}{R_{L}+R_{S}}\left(-V_{\text {in }}\right) \quad$ for $V_{\text {in }}>-V-V_{o}$ and $V_{\text {in }}$ is -ve.
$V_{\text {out }}=\frac{R_{L}}{R_{L}+R_{S}}\left(V_{\text {in }}\right) \quad$ for $V_{\text {in }}$ during its +ve cycle.

Clamping diode

Function:

To include a dc level into an ac signal.
Also known as a dc restorer.
Main application is in the
 TV receiver as a dc restorer.

